Robot

De Wikipedia, la enciclopedia libre
Saltar a navegación , búsqueda
ASIMO (2000) en la Expo 2005 , un robot humanoide
Articulados robots de soldadura utilizados en una fábrica

Un robot es un agente inteligente mecánico o virtual que puede realizar tareas de forma automática o con la orientación, por lo general por control remoto. En la práctica un robot es generalmente una máquina electro-mecánico que es guiado por ordenador y la programación electrónica. Los robots pueden ser autónomas , semiautónomas o controlado de forma remota. Los robots humanoides van desde como ASIMO y Topio de Nano robots , robots enjambre , los robots industriales y robots militares , los móviles y robots de servicio . Al imitar un aspecto natural o la automatización de movimientos, un robot puede transmitir la sensación de que tiene la intención o la agencia propia. La rama de la tecnología que se ocupa de los robots es la robótica .

Cuando las sociedades primero comenzó a desarrollar, casi toda la producción y el esfuerzo fue el resultado del trabajo humano, así como con la ayuda de los animales semi-domesticados y completamente. Como medios mecánicos de la realización de las funciones fueron descubiertos, y la mecánica y los mecanismos complejos se desarrollaron, la necesidad de trabajo humano se reduce. Maquinaria se utilizó inicialmente para las funciones repetitivas, tales como el levantamiento de agua y moler el grano. Con los avances tecnológicos máquinas más complejas se desarrollaron lentamente, como los inventados por Herón de Alejandría (en Egipto) en el siglo primero, y la primera mitad del segundo milenio después de Cristo, como los autómatas de Al-Jazari en el siglo 12 AD (en Irak medieval ). Ellos no se han adoptado ampliamente el trabajo humano, en particular, el trabajo esclavo, todavía era barato en comparación con las máquinas de uso intensivo de capital. Hombres como Leonardo Da Vinci en 1495 a través de Jacques de Vaucanson en 1739, así como volver a descubrir los ingenieros griegos métodos, se han hecho planes para construir y autómatas y robots que conduce a los libros de diseños, tales como los japoneses zui Karakuri (Ilustrado Maquinaria) en 1796. Como técnicas mecánicas desarrollado a través de la era industrial nos encontramos con las aplicaciones más prácticas, como Nikola Tesla en 1898, que diseñó un barco controlado por radio, y John Hammond Jr. y Benjamin Miessner que en 1912 creó el perro eléctrico como un precursor de su propio Consejo Directivo torpedear de 1915. [1] También encontramos una mayor android desarrollo como diseñadores trataron de imitar más características humanas, incluidos los diseños, como las del biólogo Makoto Nishimura en 1929 y su creación Gakutensoku , que lloró y cambió sus expresiones faciales, y el más crudo Elektro de Westinghouse Electric Corporation en 1938.

Electronics se convirtió en el motor del desarrollo en lugar de la mecánica, con la llegada de los primeros electrónicos robots autónomos creados por William Grey Walter , en Bristol , Inglaterra , en 1948. El primer robot programable digital y fue inventado por George Devol en 1954 y fue llamado en última instancia la Unimate . Devol vendió el Unimate primero en General Motors en 1961, donde fue utilizado para levantar pedazos de metal caliente de fundición máquinas en la planta de interior Guía de Fisher en el West Trenton sección de Ewing Township, New Jersey . [2] Desde entonces, hemos visto robots finalmente llegar a una asimilación más verdadera de todas las tecnologías para producir robots como ASIMO , que puede caminar y moverse como un ser humano. Los robots han sustituido a los seres humanos [ cita requerida ] en la asistencia de la realización de las tareas repetitivas y peligrosas que los seres humanos prefieren no hacer, o no puede hacer debido a las limitaciones de tamaño, o incluso aquellos que, como en el espacio exterior o en el fondo del mar donde los humanos no podrían sobrevivir a los ambientes extremos.

El hombre ha desarrollado una conciencia de los problemas asociados con los robots autónomos y cómo se puede actuar en la sociedad. El miedo de comportamiento del robot, como Shelley 's Frankenstein ( Frankenstein compleja ) y la EATR , impulsar la práctica actual en el establecimiento de lo que la autonomía de un robot que debe y no debe ser capaz de hacer. El pensamiento se ha desarrollado a través de análisis de control de robots y la inteligencia artificial (IA) y cómo su aplicación debe beneficiar a la sociedad, como los que se basan en tres leyes de Asimov. Aplicación en la práctica todavía conduce hacia delante el desarrollo y los robots se utilizan en una variedad cada vez mayor de tareas como pasar la aspiradora, cortar el césped, la limpieza de los desagües, la investigación de otros planetas, la construcción de automóviles, en el entretenimiento y en la guerra.

Contenido

[ editar ] Información general

La palabra robot puede referirse tanto a los robots físicos y virtuales agentes de software , pero este último se refiere generalmente como los robots . [3] No hay consenso sobre qué equipos califican como robots, pero hay un acuerdo general entre los expertos y el público que, los robots tienden a hacer algunos o todos de los siguientes: moverse, operar una extremidad mecánica sentido, y manipular su medio ambiente, y exhiben una conducta inteligente - en especial el comportamiento que imita a los humanos u otros animales.

No hay una definición de robot que satisfaga a todos y muchas personas tienen su propia cuenta. [4] Por ejemplo Joseph Engelberger , un pionero en robótica industrial, dijo una vez: "No puedo definir un robot, pero sé que cuando veo una uno ". [5] De acuerdo con la Enciclopedia Británica es un robot "cualquier máquina de accionamiento automático que reemplaza el esfuerzo humano, aunque no pueden parecerse a los seres humanos en la apariencia o llevar a cabo las funciones de una manera parecida a la humana." La palabra "robot" viene de la palabra checa "robota" que significa "similares a la esclavitud del trabajo" [6] o "forzado el trabajo". Merriam-Webster describe un robot como una máquina "que se parece a un ser humano y lleva a cabo diferentes actos complejos (como caminar o hablar) de un ser humano "o un" dispositivo que realiza automáticamente tareas complicadas a menudo repetitivas ", o un" mecanismo guiado por controles automáticos ". [7]

[ editar ] Definición de las características

Aunque no existe una única definición correcta de "robot", [8] un robot típico tendrá varios, o posiblemente todas, de las siguientes características.

Se trata de una máquina eléctrica que tiene cierta capacidad para interactuar con los objetos físicos y que ha de darse de programación electrónica para realizar una tarea específica o para hacer toda una serie de tareas o acciones. También puede tener una cierta capacidad de percibir y asimilar los datos sobre los objetos físicos, o en su entorno físico local, o para procesar los datos, o para responder a diversos estímulos. Esto está en contraste con un simple dispositivo mecánico tal como un engranaje o una prensa hidráulica o cualquier otro elemento que no tiene la capacidad de procesamiento y que hace a través de tareas puramente mecánicas procesos y de movimiento. [ cita requerida ]

Agencia Mental

Para los ingenieros de robótica, la apariencia física de una máquina es menos importante que la forma en que sus acciones están controladas . Cuanto más el sistema de control parece tener agencia propia, es más probable que la máquina ha de ser llamado un robot. Una característica importante de la agencia es la capacidad de tomar decisiones. De más alto nivel las funciones cognitivas, sin embargo, no son necesarios, como lo demuestran los robots de hormigas . [ cita requerida ]

Agencia de Física

Sin embargo, para muchos laicos , si aparece una máquina capaz de controlar sus brazos o ramas, y, sobre todo si aparece antropomórfica o zoomórfica (por ejemplo, ASIMO o Aibo ), que se llamaría un robot. [ cita requerida ]

Incluso para una fresadora de 3 ejes CNC utilizando el mismo sistema de control como un brazo de robot, es el brazo que casi siempre se llama a un robot, mientras que la máquina CNC es por lo general sólo una máquina. Tener los ojos también puede hacer una diferencia en si una máquina se llama un robot, ya que los seres humanos por instinto conectar los ojos con sensibilidad. Sin embargo, sólo tiene que ser antropomórfico no es un criterio suficiente para que algo se llama un robot. Un robot debe hacer algo, un objeto inanimado con forma de ASIMO no se considera un robot [. cita requerida ]

[ editar ] Historia

La idea de los autómatas se origina en las mitologías de muchas culturas alrededor del mundo. Los ingenieros y los inventores de las civilizaciones antiguas, incluyendo la antigua China , [12] la antigua Grecia y Egipto ptolemaico , [13] trató de construir máquinas de auto-operativos, algunos animales se asemejan a los seres humanos. Las primeras descripciones de los autómatas son las palomas artificiales de Arquitas , [14] los pájaros artificiales de Mozi y Lu Ban , [15] un "hablar" autómata por Herón de Alejandría , un autómata lavabo por Filón de Bizancio , y un ser humano se describe en el autómata la mentira Zi. [12]

[ editar ] Los antiguos orígenes

Muchas mitologías antiguas incluir a las personas artificiales, como los sirvientes mecánicos construidos por el dios griego Hefesto [22] ( Vulcano para los romanos), las de arcilla golems de la leyenda judía y los gigantes de arcilla de la leyenda nórdica, y Galatea , la estatua mítico de Pigmalión que volvió a la vida.

Desde alrededor del año 400 aC, los mitos de Creta que se incorporaron a la mitología griega son Talos , un hombre de bronce que guardaba la isla de Creta de Europa de los piratas.

En la antigua Grecia, el ingeniero griego Ctesibio (c. 270 aC) "aplicar el conocimiento de neumática e hidráulica para producir el primer órgano y los relojes de agua con figuras en movimiento". [23] [24] En el siglo cuarto, el griego, el matemático Arquitas de Tarento postuló una mecánica de vapor que funciona con las aves que él llamó "La paloma". Herón de Alejandría (10-70 dC), un matemático griego e inventor, creó numerosos configurables por el usuario dispositivos automatizados, y describió máquinas accionadas por presión de aire, vapor y el agua. [25]

En la antigua China, el texto del siglo tercero antes de Cristo de la Lie Tsé describe una cuenta de autómatas humanoides, que implica un encuentro mucho más temprano entre el rey Mu de Zhou (China aC el emperador siglo 10) y un ingeniero mecánico conocido como Yan Shi, un "artífice" . Este último presentó con orgullo al rey con una de tamaño natural, con forma humana figura de su mecánica 'obra' de cuero, madera y órganos artificiales. [12] Hay también relatos de autómatas que vuelan en el Han Fei Zi y otros textos , que atribuye el quinto siglo AC Mohist filósofo Mozi y su contemporáneo Lu Ban con la invención de los pájaros artificiales de madera (Ma Yuan) que con éxito podía volar. [15] En 1066, el inventor chino Su Song construyó un reloj de agua en forma de una torre que contó con figuras mecánicas que metió baza de las horas. El comienzo de los autómatas se asocia con la invención de la primera torre de Su Song reloj astronómico destacado figuras mecánicas que metió baza de las horas. [26]

En el mundo islámico medieval, Al-Jazari (1136-1206), un inventor de los musulmanes durante la dinastía de artuqí , diseñado y construido un número de máquinas automatizadas, incluyendo aparatos de cocina, autómatas musicales impulsado por agua, y los autómatas programables. [16] [ 27] El autmomata apareció como cuatro músicos en un barco en un lago, entretener a los invitados en las fiestas reales de consumo. Su mecanismo tenía una caja de ritmos programable con clavijas ( cámaras ) que chocó con pequeñas palancas que operaban los instrumentos de percusión. El baterista se podría hacer para tocar ritmos diferentes y diferentes patrones de batería, moviendo las clavijas a diferentes lugares. [27]

[ editar ] Los primeros desarrollos modernos

En Renacimiento, Italia, Leonardo da Vinci (1452-1519) esbozó los planes para un robot humanoide en torno a 1495. Cuadernos de Da Vinci, redescubierta en la década de 1950, contenían dibujos detallados de un caballero mecánico ahora conocido como robot de Leonardo , capaces de sentarse, agitar los brazos y mover su cabeza y la mandíbula. [28] El diseño se basaba probablemente en la investigación anatómica registrado en el Hombre de Vitruvio . No se sabe si se trató de construir.

En Japón, un animal complejo y autómatas humanos fueron construidas entre los siglos 17 y 19, y muchos se describe en el siglo 18 Karakuri Zui (Ilustrado Maquinaria, 1796). Uno de ellos fue el autómata ningyo Karakuri , un sistema mecanizado de títeres . [29] Las diferentes variaciones de la karakuri existían: la karakuri Butai, que fueron utilizados en el teatro , el Karakuri Zashiki, que eran pequeñas y se utilizan en los hogares, y el Dashi Karakuri, que eran utilizado en las fiestas religiosas, donde los títeres fueron usados ??para llevar a cabo representaciones de los tradicionales mitos y leyendas .

En Francia, entre 1738 y 1739, Jacques de Vaucanson exhibió varios autómatas de tamaño natural: un flautista, un reproductor de tubería y un pato. El pato mecánico podía batir sus alas, grúa de su cuello, y tragar la comida de la mano del expositor, y le dio la ilusión de digerir su comida por la materia excretar almacena en un compartimiento oculto. [30]

[ editar ] Los desarrollos modernos

Los japoneses artesano Hisashige Tanaka (1799-1881), conocido como "Japón Edison" o "Giemon Karakuri", creó una serie de juguetes mecánicos extremadamente complejos, algunos de los cuales servía el té, dispararon flechas extraídas de un carcaj, e incluso pintó un japonés kanji. [31]

A los vehículos operados por control remoto se demostró en el 19 al final de la forma de varios tipos de controlados a distancia torpedos . La década de 1870 vio por control remoto torpedos por John Ericsson ( neumáticos ), Juan Luis Lay (cableado eléctrico con guía), y Víctor von Scheliha (cableado eléctrico con guía). [17] En 1898, Nikola Tesla demostró públicamente un "Wireless" radio-controlados torpedo que esperaba vender a la Marina de los EE.UU. . [32] [33]

En 1926, Westinghouse Electric Corporation creó Televox, el primer robot puesto a un trabajo útil. Se siguió Televox con un número de otros robots simples, incluyendo uno Rastus llamados, hechos en la imagen en bruto de un hombre negro. En la década de 1930, crearon un robot humanoide conocido como Elektro para fines de exposición, incluyendo el 1939 y 1940 las ferias del mundo . [34] [35] En 1928, el primer robot de Japón, Gakutensoku , fue diseñado y construido por el biólogo Makoto Nishimura.

Los primeros robots electrónicos autónomos con un comportamiento complejo fueron creados por William Grey Walter de la Carga del Instituto Neurológico en Bristol, Inglaterra en 1948 y 1949. Fueron nombrados Elmer y Elsie. Estos robots pueden detectar la luz y el contacto con los objetos externos, y utilizar estos estímulos para navegar. [36]

El primer robot verdaderamente moderno, control digital y programable, fue inventado por George Devol en 1954 y fue llamado en última instancia la Unimate . Devol vendió el Unimate primero en General Motors en 1960, y se instaló en 1961 en una planta en Trenton, Nueva Jersey para levantar piezas calientes de metal de una fundición a presión de la máquina y la pila de ellos. [37] Devol de patente para el primer control digital brazo robótico programable representa la fundación de la moderna industria de la robótica. [38]

Los robots industriales y comerciales se encuentran ahora en uso generalizado la realización de trabajos de forma más barata o con mayor precisión y fiabilidad que los seres humanos. También se emplean para los trabajos que son demasiado sucias, peligrosas o aburrida que es adecuado para los seres humanos. Los robots se usan ampliamente en la fabricación, el montaje y el embalaje de transporte, la tierra y la exploración espacial, la cirugía, el armamento, la investigación de laboratorio, y la producción masiva de bienes de consumo e industriales. [39]

[ editar ] Etimología

Una escena de Karel ?apek 's juego 1920 RUR (Robots Universales de Rossum) , que muestra tres robots

La palabra robot fue presentado al público por la checa de entreguerras escritor Karel ?apek en su obra teatral RUR (Robots Universales de Rossum) , publicado en 1920. [40] La obra comienza en una fábrica que hace que las personas artificiales llamadas robots, a pesar de que están más cerca de las ideas modernas de los androides , criaturas que pueden confundirse con los seres humanos. Ellos simplemente se puede pensar por sí mismos, a pesar de que parece feliz de servir. La cuestión es si los robots están siendo explotados y las consecuencias de su tratamiento.

Karel ?apek él no acuñó la palabra. Él escribió una breve carta en referencia a una etimología en el Diccionario Inglés de Oxford en el que nombró a su hermano, el pintor y escritor Josef ?apek , ya que su verdadero creador. [40]

En un artículo en el diario checo Lidové noviny en 1933, explicó que él había querido llamar a la Labori criaturas (los "trabajadores", de América la mano de obra) o d?l?asi (de d?lníci Checa - "trabajadores"). Sin embargo, no le gustaba la palabra, y buscó el consejo de su hermano Josef, quien sugirió "roboti". La palabra robota significa literalmente " corvée "," trabajo servil ", y en sentido figurado" trabajo pesado "o" trabajo duro "en la República Checa y también (más general) "trabajo", "trabajo" en muchas lenguas eslavas (por ejemplo: Eslovaquia , Polonia , Macedonia , Ucrania , arcaica Checa ). Tradicionalmente, la robota era el período de trabajo de un siervo ( corvée ) tuvo que renunciar a su señor, por lo general de 6 meses del año. El origen de la palabra es la iglesia vieja eslava rabota "servidumbre" ("trabajo" en la actual Bulgaria y Rusia ), que a su vez proviene del indoeuropeo la raíz * orbh. [41] La servidumbre fue prohibido en 1848 en Bohemia , así que en el momento de ?apek escribió RUR, el uso de la robota plazo se había ampliado para incluir diversos tipos de trabajo, pero el sentido obsoleto de "servidumbre" todavía habría sido conocida. [42] No está claro en qué idioma ?apek tomó la base "robot (a)". Esta pregunta no es irrelevante, ya que su respuesta podría ayudar a revelar un ?apek original concepción de los robots. Si de la moderna República Checa el idioma, el concepto de robot debe ser entendido como un "automático siervo "(que significa un ser subordinado, sin voluntad propia). Si por ejemplo, desde Eslovaquia (Karel ?apek y su hermano eran visitantes frecuentes de Eslovaquia, que en este tiempo era parte de Checoslovaquia , debido a que su padre MUDr.. Antonín ?apek a partir de 1916 trabajó como médico en Trencianske Teplice . [43] ), la palabra robot simplemente significa un "trabajador" que es una noción más universal y neutral. El aspecto de la pronunciación, probablemente, también desempeñó un papel en la decisión final ?apek: En lenguas eslavas no es fácil de pronunciar la palabra robot que d?l?as o mano de obra.

La palabra robótica , que se utilizan para describir este campo de estudio, [44] fue acuñado por el escritor de ciencia ficción Isaac Asimov . Asimov creó las " Tres Leyes de la Robótica ", que son un tema recurrente en sus libros. Estos han sido utilizado desde entonces por muchos otros para definir leyes que se utilizan en la realidad y la ficción. Introducido en el 1942 cuento " Runaround "las leyes del estado lo siguiente:

"
  1. Un robot no debe dañar a un ser humano o, por inacción, permitir que un ser humano sufra daño.
  2. Un robot debe obedecer las órdenes dadas por los seres humanos, excepto cuando tales órdenes entren en conflicto con la primera ley.
  3. Un robot debe proteger su propia existencia mientras dicha protección no entre en conflicto con la Primera o Segunda Ley..
"

[ editar ] Los robots modernos

Una laparoscópica de la máquina de cirugía robótica

[ editar ] robot móvil

Los robots móviles tienen la capacidad de moverse en su entorno y no se fija a una localización física. Un ejemplo de un robot móvil que está en uso común hoy en día es el vehículo automático guiado o automática de vehículos guiados (AGV). El AGV es un robot móvil que sigue a los marcadores o los cables en el suelo, o utiliza la visión o el láser. AGV se analizan más adelante en este artículo. [ cita requerida ]

Los robots móviles se encuentran también en la industria, militares y entornos de seguridad. También aparecen como productos de consumo, para el entretenimiento o para realizar ciertas tareas como la limpieza de vacío. Los robots móviles son el centro de una gran cantidad de investigaciones en curso y la universidad casi todos los grandes tiene uno o más laboratorios dedicados a la investigación robot móvil. [ cita requerida ]

Los robots modernos se suelen utilizar en ambientes fuertemente controladas, tales como en líneas de montaje debido a que tienen dificultades para responder a la interferencia inesperada. Debido a esto, la mayoría de los seres humanos rara vez se encuentran los robots. Sin embargo, los robots domésticos de limpieza y mantenimiento son cada vez más común en los alrededores de las viviendas en los países desarrollados. Los robots también se pueden encontrar en militares aplicaciones. [ cita requerida ]

[ editar ] Los robots industriales (manipulación)

Los robots industriales suelen consistir en un brazo articulado (multi-enlazado manipulador) y un efector final que está unida a una superficie fija. Uno del tipo más común de efector final es una pinza de montaje.

La Organización Internacional de Normalización da una definición de un robot manipulador industrial en la norma ISO 8373 :

"Una controlada automáticamente, reprogramable, manipulador polivalente, programable en tres o más ejes, que puede ser fijo o móvil en el lugar para su uso en aplicaciones de automatización industrial". [45]

Esta definición es utilizada por el Federación Internacional de Robótica , la Comisión Europea de Investigación Robótica Network (EURON) y muchos de los comités nacionales de normalización. [46]

Un robot de recogida y colocación en una fábrica

[ editar ] Servicio de robot

Por lo general los robots industriales se fijan los brazos robóticos y manipuladores utilizados principalmente para la producción y distribución de bienes. El término "servicio robot" no está tan bien definido. IFR ha propuesto una definición tentativa ", un robot de servicio es un robot que opera semi o totalmente autónoma para realizar servicios útiles para el bienestar de los seres humanos y equipos, con exclusión de las operaciones de fabricación." [ cita requerida ]

[ editar ] robot modular

Los robots modulares es una nueva generación de robots que están diseñados para aumentar la utilización de los robots, modularizando los robots. La funcionalidad y la eficacia de un robot modular es más fácil de aumentar en comparación con los robots convencionales.

[ editar ] Los robots en la sociedad

Aproximadamente la mitad de todos los robots en el mundo están en Asia, 32% en Europa, y el 16% en América del Norte, del 1% en Oceanía y el 1% en África. [49] 30% de todos los robots en el mundo están en Japón , [50] que hace de Japón el país con el mayor número de robots.

[ editar ] Las perspectivas regionales

En Japón y Corea del Sur , las ideas de los robots del futuro han sido principalmente positiva, y el inicio de la sociedad a favor de robótica que se piensa que es posiblemente debido a la famosa ' Astro Boy '. Las sociedades de Asia, como Japón, Corea del Sur y, más recientemente, China, creen que los robots sean más iguales a los humanos, que tiene que cuidar a los ancianos, jugar o enseñar a los niños, o reemplazar los animales domésticos, etc [51] El punto de vista general en Asia culturas es que el avance más robots, mejor.

"Este es el inicio de una era en que los seres humanos y los robots pueden coexistir", dice la firma japonesa Mitsubishi acerca de uno de los robots muchos humanistas en Japón. [52] Corea del Sur tiene como objetivo poner un robot en cada casa hay de aquí a 2015 -2020, a fin de ayudar a ponerse al día tecnológicamente con el Japón. [53] [54]

Las sociedades occidentales tienen más probabilidades de estar en contra, o incluso temen que el desarrollo de la robótica, a través de los medios de comunicación de salida tanto en el cine y la literatura que van a reemplazar a los humanos. Algunos creen que los robots se refiere a Occidente como una "amenaza" para el futuro de los seres humanos, en parte debido a las creencias religiosas sobre el papel de los seres humanos y la sociedad. [55] [56] Obviamente, estos límites no son claros, pero hay una significativa diferencia entre los dos puntos de vista culturales.

[ editar ] Autonomía y las cuestiones éticas

Un androide , o un robot diseñado para parecerse a un ser humano, puede parecer reconfortante para algunos y molestar a los demás [57]

As robots have become more advanced and sophisticated, experts and academics have increasingly explored the questions of what ethics might govern robots' behavior, [ 58 ] and whether robots might be able to claim any kind of social, cultural, ethical or legal rights. [ 59 ] One scientific team has said that it is possible that a robot brain will exist by 2019. [ 60 ] Others predict robot intelligence breakthroughs by 2050. [ 61 ] Recent advances have made robotic behavior more sophisticated. [ 62 ] The social impact of intelligent robots is subject of a 2010 documentary film called Plug & Pray . [ 63 ]

Vernor Vinge has suggested that a moment may come when computers and robots are smarter than humans. He calls this " the Singularity ". [ 64 ] He suggests that it may be somewhat or possibly very dangerous for humans. [ 65 ] This is discussed by a philosophy called Singularitarianism .

In 2009, experts attended a conference hosted by the Association for the Advancement of Artificial Intelligence (AAAI) to discuss whether computers and robots might be able to acquire any autonomy, and how much these abilities might pose a threat or hazard. They noted that some robots have acquired various forms of semi-autonomy, including being able to find power sources on their own and being able to independently choose targets to attack with weapons. They also noted that some computer viruses can evade elimination and have achieved "cockroach intelligence." They noted that self-awareness as depicted in science-fiction is probably unlikely, but that there were other potential hazards and pitfalls. [ 64 ] Various media sources and scientific groups have noted separate trends in differing areas which might together result in greater robotic functionalities and autonomy, and which pose some inherent concerns. [ 66 ] [ 67 ] [ 68 ]

[ edit ] Military robots

Some experts and academics have questioned the use of robots for military combat, especially when such robots are given some degree of autonomous functions. [ 69 ] There are also concerns about technology which might allow some armed robots to be controlled mainly by other robots. [ 70 ] The US Navy has funded a report which indicates that as military robots become more complex, there should be greater attention to implications of their ability to make autonomous decisions. [ 71 ] [ 72 ] One researcher states that autonomous robots might be more humane, as they could make decisions more effectively. However, other experts question this. [ 73 ]

Some public concerns about autonomous robots have received media attention. [ 74 ] One robot in particular, the EATR , has generated concerns over its fuel source as it can continually refuel itself using organic substances. [ 75 ] Although the engine for the EATR is designed to run on biomass and vegetation [ 76 ] specifically selected by its sensors which it can find on battlefields or other local environments, the project has stated that chicken fat can also be used. [ 77 ]

[ edit ] Contemporary uses

A general-purpose robot acts as a guide during the day and a security guard at night

At present there are two main types of robots, based on their use: general-purpose autonomous robots and dedicated robots.

Robots can be classified by their specificity of purpose. A robot might be designed to perform one particular task extremely well, or a range of tasks less well. Of course, all robots by their nature can be re-programmed to behave differently, but some are limited by their physical form. For example, a factory robot arm can perform jobs such as cutting, welding, gluing, or acting as a fairground ride, while a pick-and-place robot can only populate printed circuit boards.

[ edit ] General-purpose autonomous robots

General-purpose autonomous robots can perform a variety of functions independently. General-purpose autonomous robots typically can navigate independently in known spaces, handle their own re-charging needs, interface with electronic doors and elevators and perform other basic tasks. Like computers, general-purpose robots can link with networks, software and accessories that increase their usefulness. They may recognize people or objects, talk, provide companionship, monitor environmental quality, respond to alarms, pick up supplies and perform other useful tasks. General-purpose robots may perform a variety of functions simultaneously or they may take on different roles at different times of day. Some such robots try to mimic human beings and may even resemble people in appearance; this type of robot is called a humanoid robot. Humanoid robots are still in a very limited stage, as no humanoid robot, can, as of yet, actually navigate around a room that it has never been in. Thus humanoid robots are really quite limited, despite their intelligent behaviors in their well-known environments.

[ edit ] Factory robots

Car production

Over the last three decades automobile factories have become dominated by robots. A typical factory contains hundreds of industrial robots working on fully automated production lines, with one robot for every ten human workers. On an automated production line, a vehicle chassis on a conveyor is welded , glued , painted and finally assembled at a sequence of robot stations.

Packaging

Industrial robots are also used extensively for palletizing and packaging of manufactured goods, for example for rapidly taking drink cartons from the end of a conveyor belt and placing them into boxes, or for loading and unloading machining centers.

Electronics

Mass-produced printed circuit boards (PCBs) are almost exclusively manufactured by pick-and-place robots, typically with SCARA manipulators, which remove tiny electronic components from strips or trays, and place them on to PCBs with great accuracy. [ 78 ] Such robots can place hundreds of thousands of components per hour, far out-performing a human in speed, accuracy, and reliability. [ 79 ]

Automated guided vehicles (AGVs)
An intelligent AGV drops-off goods without needing lines or beacons in the workspace

Mobile robots, following markers or wires in the floor, or using vision [ 80 ] or lasers, are used to transport goods around large facilities, such as warehouses, container ports, or hospitals. [ 81 ]

Early AGV-Style Robots
Limited to tasks that could be accurately defined and had to be performed the same way every time. Very little feedback or intelligence was required, and the robots needed only the most basic exteroceptors (sensors). The limitations of these AGVs are that their paths are not easily altered and they cannot alter their paths if obstacles block them. If one AGV breaks down, it may stop the entire operation.
Interim AGV-Technologies
Developed to deploy triangulation from beacons or bar code grids for scanning on the floor or ceiling. In most factories, triangulation systems tend to require moderate to high maintenance, such as daily cleaning of all beacons or bar codes. Also, if a tall pallet or large vehicle blocks beacons or a bar code is marred, AGVs may become lost. Often such AGVs are designed to be used in human-free environments.
Intelligent AGVs (i-AGVs)
Such as SmartLoader, [ 82 ] SpeciMinder, [ 83 ] ADAM, [ 84 ] Tug [ 85 ] Eskorta, [ 86 ] and MT 400 with Motivity [ 87 ] are designed for people-friendly workspaces. They navigate by recognizing natural features. 3D scanners or other means of sensing the environment in two or three dimensions help to eliminate cumulative errors in dead-reckoning calculations of the AGV's current position. Some AGVs can create maps of their environment using scanning lasers with simultaneous localization and mapping (SLAM) and use those maps to navigate in real time with other path planning and obstacle avoidance algorithms. They are able to operate in complex environments and perform non-repetitive and non-sequential tasks such as transporting photomasks in a semiconductor lab, specimens in hospitals and goods in warehouses. For dynamic areas, such as warehouses full of pallets, AGVs require additional strategies using three-dimensional sensors such as time-of-flight or stereovision cameras.

[ edit ] Dirty, dangerous, dull or inaccessible tasks

There are many jobs which humans would rather leave to robots. The job may be boring, such as domestic cleaning , or dangerous, such as exploring inside a volcano . [ 88 ] Other jobs are physically inaccessible, such as exploring another planet , [ 89 ] cleaning the inside of a long pipe, or performing laparoscopic surgery. [ 90 ]

Space probes

Almost every unmanned space probe ever launched was a robot. [ citation needed ] Some were launched in the 1960s with very limited abilities, but their ability to fly and land (in the case of Luna 9 ) is an indication of their status as a robot. This includes the Voyager probes and the Galileo probes, and others.

Telerobots
A US Marine Corps technician prepares to use a telerobot to detonate a buried improvised explosive device near Camp Fallujah , Iraq

Teleoperated robots, or telerobots are devices remotely operated from a distance by a human operator rather than following a predetermined sequence of movements. They are used when a human cannot be present on site to perform a job because it is dangerous, far away, or inaccessible. The robot may be in another room or another country, or may be on a very different scale to the operator. For instance, a laparoscopic surgery robot allows the surgeon to work inside a human patient on a relatively small scale compared to open surgery, significantly shortening recovery time. [ 90 ] They can also be used to avoid exposing workers to the hazardous and tight spaces such as in duct cleaning. When disabling a bomb, the operator sends a small robot to disable it. Several authors have been using a device called the Longpen to sign books remotely. [ 91 ] Teleoperated robot aircraft, like the Predator Unmanned Aerial Vehicle , are increasingly being used by the military. These pilotless drones can search terrain and fire on targets. [ 92 ] [ 93 ] Hundreds of robots such as iRobot 's Packbot and the Foster-Miller TALON are being used in Iraq and Afghanistan by the US military to defuse roadside bombs or improvised explosive devices (IEDs) in an activity known as explosive ordnance disposal (EOD). [ 94 ]

Automated fruit harvesting machines
The Roomba domestic vacuum cleaner robot does a single, menial job

Used to pick fruit on orchards at a cost lower than that of human pickers.

Domestic robots

Domestic robots are simple robots dedicated to a single task work in home use. They are used in simple but unwanted jobs, such as vacuum cleaning and floor washing , and lawn mowing .

[ edit ] Military robots

Military robots include the SWORDS robot which is currently used in ground-based combat. It can use a variety of weapons and there is some discussion of giving it some degree of autonomy in battleground situations. [ 95 ] [ 96 ] [ 97 ]

Unmanned combat air vehicles (UCAVs), which are an upgraded form of UAVs , can do a wide variety of missions, including combat. UCAVs are being designed such as the Mantis UCAV which would have the ability to fly themselves, to pick their own course and target, and to make most decisions on their own. [ 98 ] The BAE Taranis is a UCAV built by Great Britain which can fly across continents without a pilot and has new means to avoid detection. [ 99 ] Flight trials are expected to begin in 2011. [ 100 ] [ 101 ]

The AAAI has studied this topic in depth [ 58 ] and its president has commissioned a study to look at this issue. [ 102 ]

Some have suggested a need to build " Friendly AI ", meaning that the advances which are already occurring with AI should also include an effort to make AI intrinsically friendly and humane. [ 103 ] Several such measures reportedly already exist, with robot-heavy countries such as Japan and South Korea [ 53 ] having begun to pass regulations requiring robots to be equipped with safety systems, and possibly sets of 'laws' akin to Asimov's Three Laws of Robotics . [ 104 ] [ 105 ] An official report was issued in 2009 by the Japanese government's Robot Industry Policy Committee. [ 106 ] Chinese officials and researchers have issued a report suggesting a set of ethical rules, and a set of new legal guidelines referred to as "Robot Legal Studies." [ 107 ] Some concern has been expressed over a possible occurrence of robots telling apparent falsehoods. [ 108 ]

[ edit ] Mining Robots

Mining robots are designed to help counteract a number of challenges currently facing the mining industry, including skills shortages, improving productivity from declining ore grades, and achieving environmental targets. Due to the hazardous nature of mining, in particular underground mining , the prevalence of autonomous, semi-autonomous, and tele-operated robots has greatly increased in recent times. A number of vehicle manufacturers provide autonomous trains, trucks and loaders that will load material, transport it on the mine site to its destination, and unload without requiring human intervention. One of the worlds largest mining corporations, Rio Tinto has recently expanded its autonomous vehicle fleet to the worlds largest, consisting of 150 autonomous Komatsu trucks, operating in Western Australia . [ 109 ]

Drilling, longwall and rockbreaking machines are now also available as autonomous robots. [ 110 ] The Atlas Copco Rig Control System can autonomously execute a drilling plan on a drilling rig , moving the rig into position using GPS, setup the drill rig and drill down to specified depths. [ 111 ] Similarly, the Transmin Rocklogic system can automatically plan a path to position a rockbreaker at a selected destination [ 112 ] These systems greatly enhance the safety and efficiency of mining operations.

[ edit ] Schools

From the 1980s, robots such as turtles were used in schools and programmed using the Logo language. [ 113 ] [ 114 ] Robotics at school in the 21st century has three main applications, Robotic kits, Virtual tutors, and teacher's assistants.

Robot kits

Robotic kits like Lego Mindstorms , BIOLOID , OLLO from ROBOTIS, or BotBrain Educational Robots can help children to learn about mathematics, physics, programming, and electronics.

Robot competitions

Robotics have also been introduced into the lives of elementary and high school students with the company FIRST (For Inspiration and Recognition of Science and Technology). The organization is the foundation for the FIRST Robotics Competition , FIRST LEGO League , Junior FIRST LEGO League , and FIRST Tech Challenge competitions.

Virtual tutors

Virtual tutors are some kind of embodied agent that helps children to do their homework, for example, on peer to peer basis.

Teacher assistants

Robots as teacher assistants let children to be more assertive during the class and get more motivated. South Korea is the first country deploying a program to have a robot in each school. [ citation needed ]

[ edit ] Healthcare

Robots in healthcare have two main functions. Those which assist an individual, such as a sufferer of a disease like Multiple Sclerosis, and those which aid in the overall systems such as pharmacies and hospitals.

Home automation for the elderly and disabled
The Care-Providing Robot FRIEND . (Photo: IAT)

Robots have developed over time from simple basic robotic assistants, such as the Handy 1 , [ 115 ] through to semi-autonomous robots, such as FRIEND which can assist the elderly and disabled with common tasks.

The population is aging in many countries, especially Japan, meaning that there are increasing numbers of elderly people to care for, but relatively fewer young people to care for them. [ 116 ] [ 117 ] Humans make the best carers, but where they are unavailable, robots are gradually being introduced. [ 118 ]

FRIEND is a semi-autonomous robot designed to support disabled and elderly people in their daily life activities, like preparing and serving a meal. FRIEND make it possible for patients who are paraplegic , have muscle diseases or serious paralysis (due to strokes etc.), to perform tasks without help from other people like therapists or nursing staff.

Pharmacies

Script Pro manufactures a robot designed to help pharmacies fill prescriptions that consist of oral solids or medications in pill form. The pharmacist or pharmacy technician enters the prescription information into its information system. The system, upon determining whether or not the drug is in the robot, will send the information to the robot for filling. The robot has 3 different size vials to fill determined by the size of the pill. The robot technician, user, or pharmacist determines the needed size of the vial based on the tablet when the robot is stocked. Once the vial is filled it is brought up to a conveyor belt that delivers it to a holder that spins the vial and attaches the patient label. Afterwards it is set on another conveyor that delivers the patient's medication vial to a slot labeled with the patient's name on an LED read out. The pharmacist or technician then checks the contents of the vial to ensure it's the correct drug for the correct patient and then seals the vials and sends it out front to be picked up. The robot is a very time efficient device that the pharmacy depends on to fill prescriptions.

McKesson's Robot RX is another healthcare robotics product that helps pharmacies dispense thousands of medications daily with little or no errors. The robot can be ten feet wide and thirty feet long and can hold hundreds of different kinds of medications and thousands of doses. The pharmacy saves many resources like staff members that are otherwise unavailable in a resource scarce industry. It uses an electromechanical head coupled with a pneumatic system to capture each dose and deliver it to its either stocked or dispensed location. The head moves along a single axis while it rotates 180 degrees to pull the medications. During this process it uses barcode technology to verify its pulling the correct drug. It then delivers the drug to a patient specific bin on a conveyor belt. Once the bin is filled with all of the drugs that a particular patient needs and that the robot stocks, the bin is then released and returned out on the conveyor belt to a technician waiting to load it into a cart for delivery to the floor.

[ edit ] Research robots

While most robots today are installed in factories or homes, performing labour or life saving jobs, many new types of robot are being developed in laboratories around the world. Much of the research in robotics focuses not on specific industrial tasks, but on investigations into new types of robot, alternative ways to think about or design robots, and new ways to manufacture them. It is expected that these new types of robot will be able to solve real world problems when they are finally realized. [ citation needed ]

Nanorobots
A microfabricated electrostatic gripper holding some silicon nanowires. [ 119 ]

Nanorobotics is the emerging technology field of creating machines or robots whose components are at or close to the microscopic scale of a nanometer (10 ?9 meters). Also known as "nanobots" or "nanites", they would be constructed from molecular machines . So far, researchers have mostly produced only parts of these complex systems, such as bearings, sensors, and synthetic molecular motors , but functioning robots have also been made such as the entrants to the Nanobot Robocup contest. [ 120 ] Researchers also hope to be able to create entire robots as small as viruses or bacteria, which could perform tasks on a tiny scale. Possible applications include micro surgery (on the level of individual cells ), utility fog , [ 121 ] manufacturing, weaponry and cleaning. [ 122 ] Some people have suggested that if there were nanobots which could reproduce, the earth would turn into " grey goo ", while others argue that this hypothetical outcome is nonsense. [ 123 ] [ 124 ]

Reconfigurable Robots

A few researchers have investigated the possibility of creating robots which can alter their physical form to suit a particular task, [ 125 ] like the fictional T-1000 . Real robots are nowhere near that sophisticated however, and mostly consist of a small number of cube shaped units, which can move relative to their neighbours. Algorithms have been designed in case any such robots become a reality. [ 126 ]

Soft Robots

Robots with silicone bodies and flexible actuators ( air muscles , electroactive polymers , and ferrofluids ), controlled using fuzzy logic and neural networks , look and feel different from robots with rigid skeletons, and can have different behaviors. [ 127 ]

Swarm robots
A swarm of robots from the open-source micro-robotic project

Inspired by colonies of insects such as ants and bees , researchers are modeling the behavior of swarms of thousands of tiny robots which together perform a useful task, such as finding something hidden, cleaning, or spying. Each robot is quite simple, but the emergent behavior of the swarm is more complex. The whole set of robots can be considered as one single distributed system, in the same way an ant colony can be considered a superorganism , exhibiting swarm intelligence . The largest swarms so far created include the iRobot swarm, the SRI/MobileRobots CentiBots project [ 128 ] and the Open-source Micro-robotic Project swarm, which are being used to research collective behaviors. [ 129 ] [ 130 ] Swarms are also more resistant to failure. Whereas one large robot may fail and ruin a mission, a swarm can continue even if several robots fail. This could make them attractive for space exploration missions, where failure is normally extremely costly. [ 131 ]

Haptic interface robots

Robotics also has application in the design of virtual reality interfaces. Specialized robots are in widespread use in the haptic research community. These robots, called "haptic interfaces," allow touch-enabled user interaction with real and virtual environments. Robotic forces allow simulating the mechanical properties of "virtual" objects, which users can experience through their sense of touch . [ 132 ]

[ edit ] Entertainment

Poledancing robots

Some robots are used for entertainment and as a demonstration of the newest technology. This nimble automoton is a perfect example of this process. Being the main attractions at Ce-BIT , the world's biggest IT trade fair in Hanover, Germany. [ 133 ]

[ edit ] Future development

[ edit ] Technological trends

Various techniques have emerged to develop the science of robotics and robots. One method is evolutionary robotics , in which a number of differing robots are submitted to tests. Those which perform best are used as a model to create a subsequent "generation" of robots. Another method is developmental robotics , which tracks changes and development within a single robot in the areas of problem-solving and other functions.

[ edit ] Technological development

Overall trends

Japan hopes to have full-scale commercialization of service robots by 2025. Much technological research in Japan is led by Japanese government agencies, particularly the Trade Ministry. [ 134 ]

As robots become more advanced, eventually there may be a standard computer operating system designed mainly for robots. Robot Operating System is an open-source set of programs being developed at Stanford University , the Massachusetts Institute of Technology and the Technical University of Munich , Germany, among others. ROS provides ways to program a robot's navigation and limbs regardless of the specific hardware involved. It also provides high-level commands for items like image recognition and even opening doors. When ROS boots up on a robot's computer, it would obtain data on attributes such as the length and movement of robots' limbs. It would relay this data to higher-level algorithms. Microsoft is also developing a "Windows for robots" system with its Robotics Developer Studio, which has been available since 2007. [ 135 ]

New functions and abilities

The Caterpillar Company is making a dump truck which can drive itself without any human operator. [ 136 ]

Many future applications of robotics seem obvious to people, even though they are well beyond the capabilities of robots available at the time of the prediction. As early as 1982 people were confident that someday robots would: [ 137 ] 1. clean parts by removing molding flash 2. spray paint automobiles with absolutely no human presence 3. pack things in boxes—for example, orient and nest chocolate candies in candy boxes 4. make electrical cable harness 5. load trucks with boxes—a packing problem 6. handle soft goods, such as garments and shoes 7. shear sheep 8. prosthesis 9. cook fast food and work in other service industries 10. household robot.

Generally such predictions are overly optimistic in timescale.

[ edit ] Reading robot

A literate or 'reading robot' named Marge has intelligence that comes from software. She can read newspapers, find and correct misspelled words, learn about banks like Barclays, and understand that some restaurants are better places to eat than others. [ 138 ]

[ edit ] Problems with implementing robots in society

[ edit ] Dangers and human harm

Marauding robots may have entertainment value, but unsafe use of robots constitutes an actual danger. A heavy industrial robot with powerful actuators and unpredictably complex behavior can cause harm, for instance by stepping on a human's foot or falling on a human. Most industrial robots operate inside a security fence which separates them from human workers, but not all. Four robot-caused deaths are those of Robert Williams, Kenji Urada , Wayne Lucio, and an unnamed worker. Robert Williams was struck by a robotic arm at a casting plant in Flat Rock, Michigan on January 25, 1979. [ 139 ] Kenji Urada , a 37-year-old Japanese factory worker, was killed in 1981; Urada was performing routine maintenance on the robot, but neglected to shut it down properly, and it pushed him into a grinding machine . [ 140 ] Wayne Lucio, a 31-year-old Frito-Lay worker, died when he tried to adjust a pallet when an Automatic Guided Vehicle that did not sense a forklift, pinned Lucio between the two. [ 141 ] An unnamed contractor died when his car was crushed by debris when an Automated Storage and Retrieval System (AS/RS) collapse ignited a fire that burned for three weeks and destroyed the building in which an estimated 108 million pounds of paper were stored. [ 142 ]

[ edit ] Robotic devices

Manuel De Landa has noted that "smart missiles" and autonomous bombs equipped with artificial perception can be considered robots, and they make some of their decisions autonomously. He believes this represents an important and dangerous trend in which humans are handing over important decisions to machines. [ 143 ]

[ edit ] Relationship to unemployment

Some analysts, such as Martin Ford, author of The Lights in the Tunnel: Automation, Accelerating Technology and the Economy of the Future [ 144 ] argue that robots and other forms of automation will ultimately result in significant unemployment as machines begin to match and exceed the capability of workers to perform most jobs. [ citation needed ] At present the negative impact is only on menial and repetitive jobs, and there is actually a positive impact on the number of jobs for highly skilled technicians, engineers, and specialists . However, these highly skilled jobs are not sufficient in number to offset the greater decrease in employment among the general population, causing structural unemployment in which overall (net) unemployment rises. [ citation needed ]

A recent example of human replacement involves Taiwanese technology company Foxconn who, in July 2011, announced a three year plan to replace workers with more robots. At present the company uses ten-thousand robots but will increase them to a million robots over a three year period. [ 145 ]

Service robots of different varieties including medical robots, underwater robots, surveillance robots, demolition robots and other types of robots that carry out a multitude of jobs are gaining in numbers. Service robots are everyday tools for mankind. They can clean floors, mow lawns and guard homes and will also assist old and handicapped people, do some surgeries, inspect pipes and sites that are hazardous to people, fight fires and defuse bombs. [ 146 ]

Past responses to train humans for higher levels of technological work may have increased human labor jobs for unskilled workers in general and skilled workers also but that method does not seem to be viable now in industrial societies. Humans collecting on a toll road for instance in some countries are replaced by robots doing that job and though it may be an idea for a trained worker, say perhaps the former human toll taker doing the job to fix and program the new toll-collecting robots, it never really works out that way since not as many people are needed to make or program the robots as the robots replace. [ 147 ]

[ edit ] Robots in popular culture

[ edit ] Literature

Robotic characters, androids (artificial men/women) or gynoids (artificial women), and cyborgs (also " bionic men/women", or humans with significant mechanical enhancements) have become a staple of science fiction.

The first reference in Western literature to mechanical servants appears in Homer 's Iliad . In Book XVIII, Hephaestus , god of fire, creates new armor for the hero Achilles, assisted by robots. [ 148 ] According to the Rieu translation, "Golden maidservants hastened to help their master. They looked like real women and could not only speak and use their limbs but were endowed with intelligence and trained in handwork by the immortal gods." Of course, the words "robot" or "android" are not used to describe them, but they are nevertheless mechanical devices human in appearance. "The first use of the word Robot was in Karel ?apek's play RUR (Rossum's Universal Robots) (written in 1920)". Writer Karel ?apek was born in Czechoslovakia (Czech Republic).

Possibly the most prolific authors of the twentieth century was Isaac Asimov (1920–1992) [ 149 ] who published over five-hundred books. [ 150 ] Asimov is probably best remembered for his science-fiction stories and especially those about robots, where he placed robots and their interaction with society at the center of many of his works. [ 151 ] [ 152 ] Asimov carefully considered the problem of the ideal set of instructions robots might be given in order to lower the risk to humans, and arrived at his Three Laws of Robotics : a robot may not injure a human being or, through inaction, allow a human being to come to harm; a robot must obey orders given to it by human beings, except where such orders would conflict with the First Law; and a robot must protect its own existence as long as such protection does not conflict with the First or Second Law. [ 153 ] These were introduced in his 1942 short story "Runaround", although foreshadowed in a few earlier stories. Later, Asimov added the Zeroth Law: "A robot may not harm humanity, or, by inaction, allow humanity to come to harm"; the rest of the laws are modified sequentially to acknowledge this.

According to the Oxford English Dictionary, the first passage in Asimov's short story " Liar! " (1941) that mentions the First Law is the earliest recorded use of the word robotics . Asimov was not initially aware of this; he assumed the word already existed by analogy with mechanics, hydraulics, and other similar terms denoting branches of applied knowledge. [ 154 ]

[ edit ] Problems depicted in popular culture

Fears and concerns about robots have been repeatedly expressed in a wide range of books and films. A common theme is the development of a master race of conscious and highly intelligent robots, motivated to take over or destroy the human race. (See The Terminator , Runaway , Blade Runner , RoboCop , the Replicators in Stargate , the Cylons in Battlestar Galactica , The Matrix , Enthiran and I, Robot .) Some fictional robots are programmed to kill and destroy; others gain superhuman intelligence and abilities by upgrading their own software and hardware. Examples of popular media where the robot becomes evil are 2001: A Space Odyssey , Red Planet and Enthiran . Another common theme is the reaction, sometimes called the " uncanny valley ", of unease and even revulsion at the sight of robots that mimic humans too closely. [ 57 ] Frankenstein (1818), often called the first science fiction novel, has become synonymous with the theme of a robot or monster advancing beyond its creator. In the TV show, Futurama, the robots are portrayed as humanoid figures that live alongside humans, not as robotic butlers. They still work in industry, but these robots carry out daily lives. Other problems may include events pertaining to robot surrogates (ie the movie Surrogates ) where tissue of living organisms is interchanged with robotic systems. These problems can leave many possibilities where electronic viruses or an electro magnetic pulse (EMP) can destroy not only the robot but kill the host/operator as well.

[ editar ] Véase también

[ editar ] Referencias

  1. ^ Miessner, Benjamin (1916). Radiodynamics: The Wireless Control of Torpedoes and Other Mechanisms .  
  2. ^ Pearce, Jeremy. "George C. Devol, Inventor of Robot Arm, Dies at 99" , The New York Times , August 15, 2011. Accessed February 7, 2012. "In 1961, General Motors put the first Unimate arm on an assembly line at the company's plant in Ewing Township, NJ, a suburb of Trenton. The device was used to lift and stack die-cast metal parts taken hot from their molds."
  3. ^ "Telecom glossary "bot"" . Alliance for Telecommunications Solutions. 2001-02-28. Archived from the original on 2008-07-14 . http://web.archive.org/web/20070202121608/http://www.atis.org/tg2k/_bot.html . Retrieved 2007-09-05 .  
  4. ^ Polk, Igor (2005-11-16). "RoboNexus 2005 robot exhibition virtual tour" . Robonexus Exhibition 2005 . http://www.virtuar.com/click/2005/robonexus/index.htm . Retrieved 2007-09-10 .  
  5. ^ Harris, Tom. "How Robots Work" . How Stuff Works . http://science.howstuffworks.com/robot.htm . Retrieved 2007-09-10 .  
  6. ^ "Robot (technology)" . Encyclopaedia Britannica Online . http://www.britannica.com/EBchecked/topic/505818/robot . Retrieved 2008-08-04 .  
  7. ^ "Robot" . Merriam-Webster Dictionary . http://www.merriam-webster.com/dictionary/robot . Retrieved 2008-08-04 .  
  8. ^ "Your View: How would you define a robot?" . CBC News. 2007-07-16 . http://www.cbc.ca/technology/technology-blog/2007/07/your_view_how_would_you_define.html . Retrieved 2007-09-05 .  
  9. ^ "Real Robots on the Web" . NASA Space Telerobotics Program. 1999-10-15 . http://ranier.hq.nasa.gov/telerobotics_page/realrobots.html . Retrieved 2007-09-06 .  
  10. ^ "The Grand Piano Series: The History of The Robot" . Nimbus Records . http://www.wyastone.co.uk/nrl/gp_robot.html . Retrieved 2007-09-08 .  
  11. ^ Marc Perton (2005-07-29). "Roboraptor review - this one has teeth - in the discussion below, several people talk about RoboRaptor as being a real robot" . Engadget . http://www.engadget.com/2005/07/29/roboraptor-review-this-one-has-teeth/ . Retrieved 2008-08-07 .  
  12. ^ a b c Needham, Joseph (1991). Science and Civilisation in China: Volume 2, History of Scientific Thought . Cambridge University Press. ISBN 0-521-05800-7 .  
  13. ^ Currie, Adam (1999). "The History of Robotics" . http://www.faculty.ucr.edu/~currie/roboadam.htm . Retrieved 2007-09-10 .  
  14. ^ Noct. Att. L. 10
  15. ^ a b Needham, Volume 2, 54.
  16. ^ a b Fowler, Charles B. (October 1967). "The Museum of Music: A History of Mechanical Instruments". Music Educators Journal (MENC_ The National Association for Music Education) 54 (2): 45–49. doi : 10.2307/3391092 . JSTOR 3391092 .  
  17. ^ a b Edwyn Gray, Nineteenth-century torpedoes and their inventors, page 18
  18. ^ "Imitation of Life: A History of the First Robots" . http://www.cerebromente.org.br/n09/historia/turtles_i.htm . Retrieved 2008-09-25 .  
  19. ^ Waurzyniak, Patrick (2006-07). "Masters of Manufacturing: Joseph F. Engelberger" . Society of Manufacturing Engineers 137 (1) . http://www.sme.org/cgi-bin/find-articles.pl?&ME06ART39&ME&20060709#article . Retrieved 2008-09-25 .  
  20. ^ "Company History" . Fuji Yusoki Kogyo Co. . http://www.fujiyusoki.com/English/rekishi.htm . Retrieved 2008-09-12 .  
  21. ^ "KUKA Industrial Robot FAMULUS" . http://www.kuka-robotics.com/group/milestones/1973.htm . Retrieved 2008-01-10 .  
  22. ^ Deborah Levine Gera (2003). Ancient Greek Ideas on Speech, Language, and Civilization . Oxford University  
  23. ^ Mark E. Rosheim (1994). " Robot evolution: the development of anthrobotics ". p.2. Wiley-IEEE. ISBN 0-471-02622-0
  24. ^ " Robots then and now ". BBC.
  25. ^ O'Connor, JJ and EF Robertson. "Heron biography" . The MacTutor History of Mathematics archive . http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Heron.html . Retrieved 2008-09-05 .  
  26. ^ "Earliest Clocks" . A Walk Through Time . NIST Physics Laboratory. Archived from the original on 2008-05-31 . http://web.archive.org/web/20080531063139/http://physics.nist.gov/GenInt/Time/early.html . Retrieved 2008-08-11 .  
  27. ^ a b "I ropebot" . New Scientist (IPC Magazines) 195 (2611-2623): 32–35. July 6, 2007 . http://www.mspnews.com/news/2007/07/06/2766138.htm . Retrieved 27 January 2012 . ""He created a veritable boatload of programmable robot musicians.""  
  28. ^ "Leonardo da Vinci's Robots" . Retrieved 2008-09-25 .  
  29. ^ Jane Marie Law, Puppets of Nostalgia – The Life, Death and Rebirth of the Japanese Awaji Ningyo Tradition , 1997, Princeton University Press, ISBN 978-0-691-02894-1
  30. ^ Wood, Gabby. "Living Dolls: A Magical History Of The Quest For Mechanical Life" , The Guardian , 2002-02-16.
  31. ^ N. Hornyak, Timothy (2006). Loving the Machine: The Art and Science of Japanese Robots . New York: Kodansha International. ISBN 4-7700-3012-6 .  
  32. ^ US 613809  
  33. ^ "Tesla - Master of Lightning" . PBS.org . http://www.pbs.org/tesla . Retrieved 2008-09-24 .  
  34. ^ "Robot Dreams : The Strange Tale Of A Man's Quest To Rebuild His Mechanical Childhood Friend" . The Cleveland Free Retrieved 2008-09-25 .   [ dead link ]
  35. ^ Scott Schaut (2006). Robots of Westinghouse: 1924-Today . Mansfield Memorial Museum. ISBN 0-9785844-1-4 .  
  36. ^ Owen Holland. "The Grey Walter Online Archive" . http://www.ias.uwe.ac.uk/Robots/gwonline/gwonline.html . Retrieved 2008-09-25 .  
  37. ^ "Robot Hall of Fame - Unimate" . Carnegie Mellon University . http://www.robothalloffame.org/unimate.html . Retrieved 2008-08-28 .  
  38. ^ "National Inventor's Hall of Fame 2011 Inductee" . Invent Now . http://www.invent.org/2011induction/1_3_11_induction_devol.asp . Retrieved 2011-03-18 .  
  39. ^ "About us" . http://www.emrotechnologies.com/ .  
  40. ^ a b Zunt, Dominik. "Who did actually invent the word "robot" and what does it mean?" . The Karel ?apek website . http://capek.misto.cz/english/robot.html . Retrieved 2007-09-11 .  
  41. ^ Indo-European root *orbh-
  42. ^ Robot is cognate with the German word Arbeiter (worker). In the Kingdom of Hungary, the robot was a feudal service, similar to corvee which was rendered to local magnates by peasants every year. "The Dynasties recover power" . http://www.age-of-the-sage.org/history/1848/reaction.html . Retrieved 2008-06-25 .  
  43. ^ Biography of Karel ?apek (in Czech)
  44. ^ "robotics" . Oxford Dictionaries . http://www.oxforddictionaries.com/view/entry/m_en_gb0714530#m_en_gb0714530 . Retrieved 4 February 2011 .  
  45. ^ "Definition of a robot" (PDF). Dansk Robot Forening. Archived from the original on 2008-07-15 . http://web.archive.org/web/20070628064010/http://www.dira.dk/pdf/robotdef.pdf . Retrieved 2007-09-10 .  
  46. ^ "Robotics-related Standards Sites" . European Robotics Research Network . http://www.euron.org/resources/standards.html . Retrieved 2008-07-15 .  
  47. ^ "A Ping-Pong-Playing Terminator" . Popular Science . http://www.popsci.com/technology/article/2010-02/ping-pong-playing-terminator .  
  48. ^ "Best robot 2009" . www.gadgetrivia.com . http://www.gadgetrivia.com/8164-best_robot_international_robot_exhibition .  
  49. ^ Robots Today and Tomorrow: IFR Presents the 2007 World Robotics Statistics Survey ; World Robotics; 2007-10-29; retrieved on 2007-12-14
  50. ^ Reporting by Watanabe, Hiroaki; Writing and additional reporting by Negishi, Mayumi; Editing by Norton, Jerry; Japan's robots slug it out to be world champ ; Reuters; 2007-12-02; retrieved on 2007-01-01
  51. ^ "Robot Helpers" . USA Today . April 11, 2004.
  52. ^ Domestic robot to debut in Japan ; BBC News; 2005-08-30; retrieved on 2007-01-02
  53. ^ a b Robotic age poses ethical dilemma ; BBC News; 2007-03-07; retrieved on 2007-01-02;
  54. ^ Chamberlain, Ted; Photo in the News: Ultra-Lifelike Robot Debuts in Japan ; National Geographic News; 2005-06-10; retrieved on 2008-01-02
  55. ^ Biglione, Kirk; The Secret To Japan's Robot Dominance ; Planet Tokyo; 2006-01-24; retrieved on 2007-01-02
  56. ^ Yang, Jeff; ASIAN POP Robot Nation Why Japan, and not America, is likely to be the world's first cyborg society ; SFGate; 2005-08-25; retrieved on 2007-01-02
  57. ^ a b Ho, CC; MacDorman, KF; Pramono, ZAD (2008). "Human emotion and the uncanny valley: A GLM, MDS, and ISOMAP analysis of robot video ratings" . Proceedings of the Third ACM/IEEE International Conference on Human-Robot Interaction. March 11–14. Amsterdam. . http://www.macdorman.com/kfm/writings/pubs/Ho2007EmotionUncanny.pdf . Retrieved 2008-09-24 .  
  58. ^ a b AAAI webpage of materials on robot ethics .
  59. ^ AAAI compilation of articles on robot rights , Sources compiled up to 2006.
  60. ^ Scientists Predict Artificial Brain in 10 Years , by Kristie McNealy MD July 29, 2009.
  61. ^ Robot: Mere Machine to Transcendent Mind By Hans Moravec, Google Books.
  62. ^ Robots Almost Conquering Walking, Reading, Dancing , by Matthew Weigand, Korea Itimes, Monday, August 17, 2009.
  63. ^ Plug & Pray , documentary film by Jens Schanze about the possibilities of AI and robotics.
  64. ^ a b Scientists Worry Machines May Outsmart Man By John Markoff, NY Times, July 26, 2009.
  65. ^ The Coming Technological Singularity: How to Survive in the Post-Human Era , by Vernor Vinge, Department of Mathematical Sciences, San Diego State University, (c) 1993 by Vernor Vinge.
  66. ^ Gaming the Robot Revolution: A military technology expert weighs in on Terminator: Salvation ., By PW Singer, slate.com Thursday, May 21, 2009.
  67. ^ Robot takeover , gyre.org.
  68. ^ robot page , engadget.com.
  69. ^ Call for debate on killer robots , By Jason Palmer, Science and technology reporter, BBC News, 8/3/09.
  70. ^ Robot Three-Way Portends Autonomous Future , By David Axe wired.com, August 13, 2009.
  71. ^ New Navy-funded Report Warns of War Robots Going "Terminator" , by Jason Mick (Blog), dailytech.com, February 17, 2009.
  72. ^ Navy report warns of robot uprising, suggests a strong moral compass , by Joseph L. Flatley engadget.com, February 18th 2009.
  73. ^ New role for robot warriors; Drones are just part of a bid to automate combat. Can virtual ethics make machines decisionmakers?, by Gregory M. Lamb / Staff writer, Christian Science Monitor, February 17, 2010.
  74. ^ "Biomass-Eating Military Robot Is a Vegetarian, Company Says" . FOXNews.com . 2009-07-16 . http://www.foxnews.com/story/0,2933,533382,00.html . Retrieved 2009-07-31 .  
  75. ^ Shachtman, Noah (2009-07-17). "Danger Room What's Next in National Security Company Denies its Robots Feed on the Dead" . Wired . http://www.wired.com/dangerroom/2009/07/company-denies-its-robots-feed-on-the-dead/ . Retrieved 2009-07-31 .  
  76. ^ Press release, RTI Inc. (2009 July 16). Cyclone Power Technologies Responds to Rumors about “Flesh Eating” Military Robot , pp. 1-2.
  77. ^ Press release, RTI Inc. (2009 April 6). "Brief Project Overview" , EATR: Energetically Autonomous Tactical Robot , pp. 22.
  78. ^ "Contact Systems Pick and Place robots" . Contact Systems . http://www.contactsystems.com/c5_series.html . Retrieved 2008-09-21 .   [ dead link ]
  79. ^ "SMT pick-and-place equipment" . Assembleon. Archived from the original on Retrieved 2008-09-21 .  
  80. ^ "Smart Caddy" . Seegrid . http://www.smartcaddy.net . Retrieved 2007-09-13 .  
  81. ^ "The Basics of Automated Guided Vehicles" . Savant Automation, AGV Systems . http://www.agvsystems.com/basics/vehicle.htm . Retrieved 2007-09-13 .  
  82. ^ "Jervis B. Webb" . Webb SmartLoader . http://www.jervisbwebb.com/Products/automatic_trailer_loading.aspx?pid=190&qs=1_3_ . Retrieved 2 September 2011 .  
  83. ^ "SpeciMinder" . CSS Robotics . http://www.ccsrobotics.com/products/speciminder.html . Retrieved 2008-09-25 .   [ dead link ]
  84. ^ "ADAM robot" . RMT Robotics . http://www.rmtrobotics.com/tire_agv.html . Retrieved 2008-09-25 .  
  85. ^ "Can Do" . Aethon. Archived from the original on 2008-08-03 . http://web.archive.org/web/20080803173353/http://www.aethon.com/can_do_tug.html . Retrieved 2008-09-25 .  
  86. ^ "Eskorta robot" . Fennec Fox Technologies . http://www.fennecfoxtech.com . Retrieved 2011-11-25 .  
  87. ^ "Delivery Robots & AGVs" . Mobile Robots . http://www.mobilerobots.com/AGV.html . Retrieved 2008-09-25 .  
  88. ^ "Dante II, list of published papers" . The Robotics Institute of Carnegie Mellon University . http://www.ri.cmu.edu/projects/project_163.html . Retrieved 2007-09-16 .  
  89. ^ "Mars Pathfinder Mission: Rover Sojourner" . NASA . 1997-07-08 . http://mars.jpl.nasa.gov/MPF/rover/sojourner.html . Retrieved 2007-09-19 .  
  90. ^ a b "Robot assisted surgery: da Vinci Surgical System" . Brown University Division of Biology and Medicine . http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html . Retrieved 2007-09-19 .  
  91. ^ "Celebrities set to reach for Atwood's LongPen" . cbc.ca. 2007-08-15 . http://www.cbc.ca/arts/books/story/2007/08/15/longpen-trial.html . Retrieved 2008-09-21 .  
  92. ^ Graham, Stephen (2006-06-12). "America's robot army" . New Statesman . http://www.newstatesman.com/200606120018 . Retrieved 2007-09-24 .  
  93. ^ "Battlefield Robots: to Iraq, and Beyond" . Defense Industry Daily. 2005-06-20 . http://www.defenseindustrydaily.com/battlefield-robots-to-iraq-and-beyond-0727 . Retrieved 2007-09-24 .  
  94. ^ Shachtman, Noah (2005-11). "The Baghdad Bomb Squad" . Wired Magazine . http://www.wired.com/wired/archive/13.11/bomb.html?pg=3&topic=bomb . Retrieved 2007-09-14 .  
  95. ^ WIRED: First Armed Robots on Patrol in Iraq
  96. ^ WIRED: Armed Robots Pushed To Police
  97. ^ America's Robot Army
  98. ^ The Present and Future of Unmanned Drone Aircraft: An Illustrated Field Guide; Inside the wild kingdom of the world's newest and most spectacular species of unmanned aircraft, from swarming insect 'bots that can storm a burning building to a seven-ton weaponized spyplane invisible to radar. By Eric Hagerman, Popular Science, 23 February 2010.
  99. ^ "Taranis: The £143m Fighter Jet Of The Future" . Ministry of Defence. Retrieved 2010-07-13 .  
  100. ^ Emery, Daniel (2010-07-12). "MoD lifts lid on unmanned combat plane prototype" . BBC News . http://news.bbc.co.uk/1/hi/technology/10602105.stm . Retrieved 2010-07-12 .  
  101. ^ "Taranis: The £143million unmanned stealth jet that will hit targets in another continent" . Daily Mail . Retrieved 2010-07-12 .  
  102. ^ AAAI Presidential Panel on Long-Term AI Futures 2008-2009 Study , Association for the Advancement of Artificial Intelligence, Accessed 7/26/09.
  103. ^ Article at Asimovlaws.com , July 2004, accessed 7/27/09.
  104. ^ Asimov's First Law: Japan Sets Rules for Robots , By Bill Christensen, livescience.com, May 26, 2006.
  105. ^ Japan drafts rules for advanced robots , UPI via physorg.com, April 6, 2007.
  106. ^ Report compiled by the Japanese government's Robot Industry Policy Committee -Building a Safe and Secure Social System Incorporating the Coexistence of Humans and Robots , Official Japan government press release, Ministry of Economy, Trade and Industry, March 2009.
  107. ^ Toward the human-Robot Coexistence Society: on Safety intelligence for next Generation Robots , report by Yueh-Hsuan Weng, China Ministry of the Interior, International Journal of Social Robotics , April 7, 2009.
  108. ^ Evolving Robots Learn To Lie To Each Other , Popular Science, August 19, 2009.
  109. ^ Rio Tinto Media Center - Rio Tinto boosts driverless truck fleet to 150 under Mine of the Future™ programme
  110. ^ AIMEX blog - Autonomous mining equipment
  111. ^ Atlas Copco - RCS
  112. ^ Transmin - Rocklogic
  113. ^ Mitgang, Lee (October 25, 1983). "'Nova's' 'Talking Turtle' Pofiles High Priest of School Computer Movement". Gainesville Sun .  
  114. ^ Barnard, Jeff (January 29, 1985). "Robots In School: Games Or Retrieved March 7, 2012 .  
  115. ^ Topping, Mike; Smith, Jane. (1999). "An Overview Of Handy 1, A Rehabilitation Robot For The Severely Disabled" . CSUN Center on Disabilities Conference Proceedings . 1999 Proceedings : Session 59 . http://www.csun.edu/cod/conf/1999/proceedings/session0059.htm . Retrieved 14 August 2010 . "The early version of the Handy 1 system consisted of a Cyber 310 robotic arm with five degrees of freedom plus a gripper."  
  116. ^ Jeavans, Christine (2004-11-29). "Welcome to the ageing future" . BBC News . http://news.bbc.co.uk/1/hi/uk/4012797.stm . Retrieved 2007-09-26 .  
  117. ^ "Statistical Handbook of Japan: Chapter 2 Population" . Statistics Bureau & Statistical Research and Training Institute . http://www.stat.go.jp/english/data/handbook/c02cont.htm . Consultado el 2007-09-26.  
  118. ^ "Robotic future of patient care" . E-Health Insider. 2007-08-16 . http://www.e-health-insider.com/comment_and_analysis/250/robotic_future_of_patient_care . Consultado el 2007-09-26.  
  119. ^ Michael Hahn (1997-04-01). "Fullerene Nanogears" . NASA . http://grin.hq.nasa.gov/ABSTRACTS/GPN-2000-001535.html . Retrieved 2008-05-27 .  
  120. ^ Techbirbal: Nanobots Play Football
  121. ^ KurzweilAI.net: Utility Fog: The Stuff that Dreams Are Made Of
  122. ^ (Eric Drexler 1986) Engines of Creation, The Coming Era of Nanotechnology
  123. ^ Chris Phoenix (2003-12). "Of Chemistry, Nanobots, and Policy" . Center for Responsible Nanotechnology . http://www.crnano.org/Debate.htm . Retrieved 2007-10-28 .  
  124. ^ Nanotechnology pioneer slays "grey goo" myths . Institute of Physics Electronics Journals. 2004-06-07 . http://www.iop.org/EJ/news/-topic=763/journal/0957-4484 . Retrieved 2007-10-28 .  
  125. ^ (1996) LEGO(TM)s to the Stars: Active MesoStructures, Kinetic Cellular Automata, and Parallel Nanomachines for Space Applications
  126. ^ (Robert Fitch, Zack Butler and Daniela Rus) Reconfiguration Planning for Heterogeneous Self-Reconfiguring Robots
  127. ^ John Schwartz (2007-03-27). "In the Lab: Robots That Slink and Squirm" . Retrieved 2008-09-22 .  
  128. ^ ((cite web| http://www.activrobots.com/RESEARCH/wheelchair.html%7Ctitle=SRI/MobileRobots Centibot project))
  129. ^ "Open-source micro-robotic project" . http://www.swarmrobot.org . Retrieved 2007-10-28 .  
  130. ^ "Swarm" . iRobot Corporation . http://www.irobot.com/sp.cfm?pageid=149 . Retrieved 2007-10-28 .  
  131. ^ Knapp, Louise (2000-12-21). "Look, Up in the Sky: Robofly" . Wired Magazine . http://www.wired.com/science/discoveries/news/2000/12/40750 . Retrieved 2008-09-25 .  
  132. ^ "The Cutting Edge of Haptics" . MIT Technology review . http://www.technologyreview.com/read_article.aspx?id=17363&ch=biotech&sc=&pg=1 . Retrieved 2008-09-25 .  
  133. ^ "Pole-dancing robot introduced at world's biggest IT fair" . Retrieved 6 March 2012 .  
  134. ^ Research and Development for Next-generation Service Robots in Japan , United Kingdom Foreign Ministry report, by Yumiko Moyen, Science and Innovation Section, British Embassy, Tokyo, Japan, January 2009.
  135. ^ Robots to get their own operating system , by Mehret Tesfaye Ethipian Review, August 13, 2009.
  136. ^ The Caterpillar Self-Driving Dump Truck , By Tim McKeough, fastcompany.com, November 25, 2008.
  137. ^ "Robotics in practice: Future capabilities" by Joseph F. Engelberger . in "Electronic Servicing & Technology" magazine 1982 August.
  138. ^ Robot can read, learn like a human http://www.msnbc.msn.com/id/40534768/ns/technology_and_science-science
  139. ^ $10 Million Awarded To Family Of US Plant Worker Killed By Robot" , Ottawa Citizen , August 11, 1983, p14
  140. ^ "Trust me, I'm a robot" . The Economist . 2006-06-08 . http://www.economist.com/displaystory.cfm?story_id=7001829 . Retrieved 2007-04-30 .  
  141. ^ "Fatality at Frito-Lay" . Fort Bend Herald. 2008-11-28 . http://www.fbherald.com/news/article_4efd518b-b306-50b5-8315-67d2ec622864.html . Retrieved 2011-08-02 .  
  142. ^ "Jury finds in favor of Quad, insurer" . Journal Sentinel, Inc. 2007-09-28 . http://www.jsonline.com/business/29466909.html . Retrieved 2011-08-02 .  
  143. ^ * Manuel de Landa , War in the Age of Intelligent Machines , New York: Zone Books, 1991, 280 pages, Hardcover, ISBN 0-942299-76-0 ; Paperback, ISBN 0-942299-75-2 .
  144. ^ Ford, Martin R. (2009), The Lights in the Tunnel: Automation, Accelerating Technology and the Economy of the Future , Acculant Publishing, ISBN 978-1448659814 , http://www.thelightsinthetunnel.com . ( e-book available free online .)  
  145. ^ Yan (30). "Foxconn to replace workers with 1 million robots in 3 years" . Xinhuanet.com . http://news.xinhuanet.com/english2010/china/2011-07/30/c_131018764.htm . Retrieved 4 August 2011 .  
  146. ^ http://www.sciencedaily.com/releases/2004/10/041021085857.htm retrieved September-03-11
  147. ^ http://edition.cnn.com/2011/OPINION/09/07/rushkoff.jobs.obsolete/index.html?hpt=hp_bn1 Retrieved September-09-11
  148. ^ "Comic Potential : Q&A with Director Stephen Cole" . Cornell University . http://www.arts.cornell.edu/theatrearts/CTA/Program%20Notes/comic%20potential.asp . Consultado el 2007-11-21.  
  149. ^ Freedman, ed. by Carl (2005). Conversations with Isaac Asimov (1. ed.). Jackson: Univ. Press of Mississippi. pág. Retrieved 4 August 2011 . "... quite possibly the most prolific"  
  150. ^ Oakes, Elizabeth H. (2004). American writers . New York: Facts on File. pág. Retrieved 4 August 2011 .  
  151. ^ He wrote "over 460 books as well as thousands of articles and reviews", and was the "third most prolific writer of all time [and] one of the founding fathers of modern science fiction". White, Michael (2005). Isaac Asimov: a life of the grand master of science fiction . Carroll & Graf. pp. 1–2. ISBN 0-7867-1518-9 . http://books.google.com/?id=EWbMiyS9v98C .  
  152. ^ R. Clarke. "Asimov's Laws of Robotics - Implications for Information Technology" . Australian National University/IEEE . http://www.anu.edu.au/people/Roger.Clarke/SOS/Asimov.html . Retrieved 2008-09-25 .  
  153. ^ Seiler, Edward; Jenkins, John H. (2008-06-27). "Isaac Asimov FAQ" . Isaac Asimov Home Page . http://www.asimovonline.com/asimov_FAQ.html . Retrieved 2008-09-24 .  
  154. ^ White, Michael (2005). Isaac Asimov: A Life of the Grand Master of Science Fiction . Carroll & Graf. pp. 56. ISBN 0-7867-1518-9 .  

[ editar ] Para leer más

[ editar ] Enlaces externos

Research

Herramientas personales
Los espacios de nombres

Variantes
Acciones
Navegación
Interacción
Caja de herramientas
Imprimir / exportar
Idiomas

iv.gd - Translate any webpage in real-time - This webpage has been translated in order to make it available in another language, view original page

View this page in: Afrikaans, Albanian, Arabic, Belarusian, Bulgarian, Catalan, Chinese (Simp), Chinese (Trad), Croatian, Czech, Danish, Dutch, English, Estonian, Filipino, Finnish, French, Galician, German, Greek, Hebrew, Hindi, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Korean, Latvian, Lithuanian, Macedonian, Malay, Maltese, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian, Spanish, Swahili, Swedish, Thai, Turkish, Ukrainian, Vietnamese, Welsh, Yiddish

Content and any subsequent copyright is upheld by the third-party - contact@iv.gd